
Controlling Posture of Jumping Articulated Robot
for Stable Landing

Hotae Lee1

Abstract— We propose a new control framework of a jumping
articulated robot for a stable landing. We derive dynamics of
a hybrid system which consists of a flight phase and a stance
phase by connecting them through an inelastic impact model
of Formalsky. We assume a flight phase is a nonholonomic
Chaplygin system and a stance phase is a fully-actuated system.
Based on this dynamics, we propose new time-varying control
with considerations for features of jumping such as joint angle
limit, short duration of flight. It can make a robot get the
desired angle within a specific range at the moment of landing.
In addition, we find an optimal control to return a robot to an
upright pose based on gain tuning. Simulations using a 4-link
robot are also performed to show this visually. The motion from
new control framework performs in the limit of joints other and
requires less torque than conventional controls without a given
trajectory.

I. INTRODUCTION
Many bipedal robots have been developed to be able to

move on various terrain. For example, Boston dynamics
robot named Atlas [1] can walk through rough terrains
like snowy mountain roads. Although bipedal robots have
become adept at walking, they still have limitations on fast
dynamical activities such as jumping. This behavior is hard
to be performed precisely because the flight phase is common
in these behaviors when the bipedal robots lose contact with
the ground. In these cases, the systems are considered under-
actuated systems and it is not easy to control these systems
[2]. However, jumping is useful to travel to places of different
heights to clear some high obstacles.

So, many researchers have developed novel jumping mech-
anisms and control frames for jumping highly and efficiently
[3], [4]. But, most studies focused on only jumping ability.
Although the robots they have built can jump with good
performances, it cannot control its midair posture once
leaping in to the air. Then, it cannot continue to next tasks
and great jumping loses its meaning. Safe landing posture,
however, can ensure the robot to protect it from damage and
to be able to move continuously.

To this end, researchers tried to solve this problem through
robust design which can resist the impact. For instance,
Mowgli robot [5] can land without falling due to its large feet
and Salto-1P [6] can resist an impact due to its linkage-spring
design. But, this approach based on design has limitations
which is not applicable to general bipedal robots.

Therefore, posture control in flight phase should be con-
sidered. There are already posture control frames for 2-link

*This work was supported by SNU Undergraduate Research Program
1Hotae Lee is with the Department of Mechanical and Aerospace

Engineering, Seoul National University, Seoul, South Korea
hotae319@snu.ac.kr

Fig. 1. Jumping motion to land on the ground from a high place

flying acrobot [7]. Also, there are approaches to control aerial
maneuver of robot’s body based on tail [8], [9]. Moreover,
three link space robot’s attitude can be controlled toward
the desired configuration angle [10]. However, there is no
control frame for a jumping bipedal multi-joint robot in flight
phase, considering various features of jumping motions.
After an impact, how to control the joint angles without
given trajectory is also important to return to an upright pose,
which is an initial pose.

In this paper, new posture control frame for a 4-link robot
which includes torso, arm, upper leg, lower leg is developed.
In a flight phase, this control frame is based on a partial
feedback linearization with time-varying feedback. This sys-
tem is nonholonomic system and nonholonomic constraint
is angular momentum conservation. Our contribution is the
suggestion of new time-varying control which considered
limitations of joint angles and a short duration of flight. In
this control framework, we change the order of steps from the
previous posture control. To do this, we develop algorithm
to find the required input for a given angle and upper and
lower bound of torso angle that we can get. Moreover, our
contribution also includes the suggestion of optimal control
to return a robot to an upright pose, which considered an
impact model.

The rest of this paper is organized as follows. In Sec.
II, we derived dynamics of a flight phase and a stance
phase by using Lagrange dynamics. Also, we decomposed
the dynamics into internal rotation and transition. The inner-
loop control and the outer-loop control, new control law of
a flight phase, is established in Sec.III. Algorithm to find
the required input for new control framework is presented in
Sec.IV. Optimal control to return a robot to an upright pose
is revealed in Sec.V. All simulation results are presented in

Sec.VI, and Sec.VII concludes the paper.

II. DYNAMICS MODEL OF FOUR LINK ROBOT

A. Lagrange dynamic model

Studied bipedal robot evolves in the sagittal plane as
shown in Fig. 2, where the four link robot is composed of the
torso, arm, upper leg and lower leg. Especially, we suppose
legs and arms are bilaterally symmetric when considering
only jumping and free flying. It means one leg and one arm
are enough to analyze the movement in the flight phase. The
inertial coordinate frame x-y is attached and the position of
end point is indicated by (x, y). The absolute angles and
relative angles are defined as shown in Fig. 2. The biped's
absolute angles of the torso, arm, upper leg, lower leg are q0,
q1, q2, q3 and they are defined as angles with respect to x-
axis. The relative angles are θ = [θ1;θ2;θ3], which is known
as shape variables [11]. The parameters such as the mass
and the length of torso, arm, upper leg, and lower leg are
indicated with λi(i = 1, 2, 3, 4), respectively. Generalized
coordinates can be [x; y; q0; q1; q2; q3] or [x; y; q0; θ1; θ2; θ3].
We can divide landing process into three steps, flight phase,
impact and stance phase. The robot is said to be in the flight
phase when there is no contact with the ground. In the flight
phase, while this robot has 4 DoF(Degree of Freedom), it has
3 input torques. The actuators are provided at each joints and
ankle joint's actuator does not act in the flight phase. After
the robot contacts the ground, the stance phase starts. In the
stance phase, it has 4 input torques because the ankle joint
actuator can work. The Euler-Lagrange method is used to
obtain the dynamic model of this four link robot [12]. For
this method, the Lagrangian is defined as L = K − V , and
the equations are determined as below.

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (1)

There are two dynamics equations depending on the phase.
In the flight phase, the generalized coordinates are qf =
[x; y; q0; θ1; θ2; θ3] and the dynamics are described as below.

Mf (θ)q̈f + Cf (q̇f)q̇f + g(qf) = τf (2)

τf = [0; 0; 0;−T1;T2;T3] (3)

where Mf ∈ <6×6 is the inertia matrix, Cf ∈ <6×6 is
Coriolis and centrifugal matrix, g is the gravity vector. In
the stance phase, we do not need to include x, y in the
generalized coordinates. So, qs = [q0; θ1; θ2; θ3] and the
dynamics equations are described as below.

Ms(θ)q̈s + Cs(q̇s)q̇s + g(qs) = τs (4)

τs = [−T1;T2 − T4;T3 − T4;T4] (5)

B. Passive decomposition of 4-link robot system

Applying the passive decomposition to (2), we can de-
couple the 4-link system dynamics into the transitional
CoM(Center of Mass)dynamics and the internal rotational
dynamics [13]. Since the (6) is about a simple projectile

Fig. 2. Dynamics model of a 4-link robot

motion, we can only tackle the rotational motion for the
flight phase.

mLp̈L + gL = τL (6)

ME q̈s + CE q̇s = τE (7)

τE = [0;−T1;T2;T3] (8)

C. Impact model
In the impact model [14], the impact of articulated robot

is regarded as an inelastic impact. Thus, the contact point's
velocity becomes zero and acts like an ideal pivot, which is
actuated by ankle joint. When we assume the contact point
is the end point of the lower leg, the position of the CoM is
denoted as fcm = [xcm; ycm]and the contact point is denoted
as [x; y]. Also, h(q) is the position of CoM expressed in
terms of the contact point. It is determined by the parameters
of robot. (

x
y

)
=

(
xcm
ycm

)
− h(qs) (9)

After an impact, zeroing the velocity of the end point is
described as (before is denoted as -, after is denoted as +)(

0
0

)
=

(
ẋ+cm
ẏ+cm

)
− ∂h(qs)

∂qs
q̇s

+ (10)

At that time, the Hurmuzlu's impact model is described as(
ME 0

0 mLI2×2

) q̇s
ẋ+cm
ẏ+cm

− q̇−f
 =

(
−∂h(qs)T

∂qs

I2×2

)
IR

(11)
where IR is the ground reaction impulse. Substituting (10)
into (11), we can get IR as

IR = m

(
∂h(qs)

∂qs
q̇s

+ −
(
ẋ−cm
ẏ−cm

))
(12)

Finally, we can get the velocity after the impact as

q̇s
+=

[
ME+m

∂h(qs)
T

∂qs

∂h(qs)

∂qs

]−1[
ME m∂f2(qs)

T

∂qs

]
q̇f

−

(13)

III. CONTROL LAW DEVELOPMENT
-FLIGHT PHASE

A. Nonholonomic Chaplygin system

There is no generalized torque in the direction of q0 in the
flight phase. Thus, angular momentum is conserved shown
as below. A(i,:) means the ith row vector of the matrix A,
A(i,j) means the element of ith row, jth column.

ME(1,:)q̇s = σcm = const. (14)

Except for ME(1,1) = 0, q̇0 is affine in the θ .

q̇0 =
σcm

ME(1,1)
−
ME(1,2)

ME(1,1)
θ̇1−

ME(1,3)

ME(1,1)
θ̇2−

ME(1,4)

ME(1,1)
θ̇3 (15)

Because ME is also function of only θ, q0 is called a cyclic
coordinate for the system. The system with this structure
is referred to as a nonholonomic Chaplygin systems [15].
Since the goal of jumping is to move, it would be favorable
that every input energy is used for a transitional movement.
Although real jumping movements can be different from this,
we consider the angular momentum as zero to simplify the
problem in this paper.

B. Partial Feedback Linearization-Inner loop control

Based on dynamics, this system is under-actuated (4 DoF,
3 Input torque) and we cannot control all state variables
independently. Thus, we should surrender to control one state
variable directly. In a nonholonomic Chaplygin system, it is
general to use shape variables to control cyclic coordinates.
In this paper, we apply partial feedback linearization to this
dynamics. Shown as below, θ = [θ1; θ2; θ3] shape variables
can be controlled by transforming equations and applying
feedback linearization to partial elements.

q̈s +M−1
E CE q̇s = M−1

E [0 T1 T2 T3]T (16)

When A(i1:i2,j1:j2) is the submatrix which consists of i1 to
i2 rows, j1 to j2 columns of A, we consider only 2, 3, 4
elements as next,θ̈1θ̈2

θ̈3

+M−1
E CE q̇s(2:4,1) = (M−1

E)(2:4,2:4)

T1T2
T3

 (17)

∴

T1T2
T3

 = (M−1
E (2:4,2:4))

−1(u+M−1
E CE q̇s(2:4,1)) (18)

In order to control θ̈ with an outer loop control u such as
θ̈ = u, we designed the controller as above (18). So, we can
control shape variables as wanted by designing u. Torque
input also can be determined as above if we choose u.

Fig. 3. Simple controller diagram

C. Time-varying feedback law based on a cycle path

Conventional nonholonomic Caplygin system uses
cyclic coordinate control based on holonomy angle for
reconfiguration. Holonomy angle is a joint drift of a
cyclic coordinate after one cycle Γ of u [16], [17] in a
nonholonomic Chaplygin system. We called this drift angle
and it is parameterized by path size(d). If we know how
much the drift will occur with respect to the cyclic path
size, we can choose the required path size to drive q0 to
the desired q0. In kinematics, we can apply directly cyclic
velocity input which follows the cyclic path. In this paper,
we use the feedback input instead of feedforward input
to drive q0 to q0d because we consider the dynamics, not
kinematics. As you can see in Fig. 4, We can reach the
desired shape within finite time in step 1. After we have the
desired shape, we apply torque input to follow the cyclic
path in the shape configuration space to get the desired
drift angle. We chose isosceles right triangle (side length
= d) cyclic path on θ1, θ2 in step 2. It can be shown as below.

Step 1 (to get the desired shape variables)

u =

−cdθ̇1 − kd(θ1 − θ1d)−cdθ̇2 − kd(θ2 − θ2d)
−cdθ̇3 − kd(θ3 − θ3d)

 (t0 < t ≤ t1) (19)

Step 2 (to get the desired drift angle)

u =



−cθ̇1 − k(θ1 + d− θ1d)
−cθ̇2 − k(θ2 − d− θ2d)
−cθ̇3 − k(θ3 − θ3d)

 (t1 < t ≤ t2)

−cθ̇1 − k(θ1 − θ1d)
0

−cθ̇3 − k(θ3 − θ3d)

 (t2 < t ≤ t3)

 0

−cθ̇2 − k(θ2 − θ2d)
−cθ̇3 − k(θ3 − θ3d)

 (t3 < t ≤ t4)

(20)

The motions derived from this input is not natural and
exceeds the limit angle of joint. In addition, it needs huge
magnitude of torque in order to apply several steps of input
within short times. So, we suggest new time-varying control,
whose order of step is changed.

D. New Time-varying feedback law-outer loop control

We changed the order of step. We tried to get the drift
angle in step 1 and get to the desired shape variables in

Fig. 4. Procedures on a shape variable space of cyclic control (left) and
new time-varying control (right)

step 2. Although we can choose cyclic path to get the
required additional angle, we decide to apply input control
just once. Input control is applied in step 1 to go toward
the desired shape directly. From now on, it is based on
the displacement, not a cycle path size. It drives shape
variables by the displacement ∆i, which is in the direction
of θi to get the desired drift of q0. We called the point
after moving by the displacement the intermediate point.
Because a robot has joint angle limits, the intermediate
point should be obtained in the range of joint angles. If the
initial angular velocity of joints exists, we can settle down
through initialization step. However, most jumping motions
include the stretched behavior, which means the angular
velocity of the joints are almost zero.

Step 1 (to get the desired drift angle)

u =

−cθ̇1 − k(θ1 − (θ1i + ∆1))

−cθ̇2 − k(θ2 − (θ2i + ∆2))

−cθ̇3 − k(θ3 − (θ3i + ∆3))

 (t ≤ t1) (21)

Next, damped PD control input to drive the specific shape
into the desired shape is applied in step 2.

Step 2 (to get the desired shape variables)

u =

−cdθ̇1 − kd(θ1 − θ1d)−cdθ̇2 − kd(θ2 − θ2d)
−cdθ̇3 − kd(θ3 − θ3d)

 (t1 < t ≤ t2) (22)

This path on shape configuration space generates the drift
of q0 in this system. If we calculate this drift with respect
to displacement, we can find required input regardless of q0
state. This calculation is from integration of (15)

We want to find the required displacement to get the
desired drift angle offline. To do so, we need to know whether
we can get the desired drift angle or not. Thus, we should
find the maximum and minimum of the drift angle. Also,
the drift angle is a continuous function of the displacements
∆1,∆2,∆3. Therefore, if we find maximum and minimum
value of drift angle, we can find the required displacement
to satisfy the desired drift from intermediate value theorem,
which states if a continuous function f , with an interval [a, b],
as its domain, takes values f(a) and f(b) at each end of
the interval, then it also takes any value between f(a) and
f(b) at some point within the interval. In a next Section, the
algorithm to find the required displacement to achieve the
desired drift angle is introduced.

IV. ALGORITHM TO FIND THE REQUIRED
DISPLACEMENT

In order to find the required displacement, we developed
algorithm based on search on shape configuration space. As
mentioned above, we should find the each angle's displace-
ment and it means that we need to find the required inter-
mediate point. Also, the limits of joint angle are described
as below. These limitations are represented as a cuboid in
a shape configuration space. So, we need to choose the
intermediate point inside this cuboid. As mentioned earlier,
we have to find the extreme value of drift angle first. We
call this range [min, max] a reachable range. After we find
it, we can find the required displacement due to intermediate
value theorem.

A. Limits of joint angle

Limits of joint angle are based on human's body structure.
In fact, a human can rotate his arm, while other joints cannot
be turned around wholly. However, a human rotates his arm
only once when we observed a human's jumping motion. So,
we assume that robot does not rotate its arm several times.
Thus, the possible range of joint angles is assumed as next.

−11

6
π ≤θ1 ≤

π

6

−π
6
≤θ2 ≤ π (23)

−π ≤θ3 ≤ 0

B. Algorithm to find a reachable range

Algorithm 1 To find a reachable range
γ(θ1, θ2, θ3) = drift angle of q0 when the intermediate
point is (θ1, θ2, θ3), Discretize cuboid as n×n×n states

Input: Initial and desired shape variables
Initialization: M ← max γ(θ) (θ ∈ 8 cubiod vertices)

θ = arg maxθ γ(θ)
while M −Mpre > ε do

M ← maxθ1 γ(θ) s.t. θ2, θ3 is fixed at previous stage
Iterate search along θ2, θ3 axis same as above

end while
Iterate same procedures of ’while’ for a min γ(θ)
Get a reachable range with θ (arg max γ, arg min γ)
end

End

If we choose the desired shape configuration, our control
method can make shape variables reach to any values in
the possible range of joint angles because shape variables
are controlled directly. So, we need to decide q0 drift's
reachable range, given the final shape variable. A drift of q0
does not depend on q0 state like angular velocity and initial
value. Then, we developed algorithm to find maximum drift
angle and minimum drift angle inside the possible range of
joint angles. For convenience, we searched the maximum
and minimum value of the sum of initial angle and drift
angle, which means the actual torso angle. The algorithm

also needs the desired shape variables. Given that, algorithm
starts to search for maximum and minimum value of drift
angle. Using KKT condition and gradient descent method
is a strict method, but it requires a long computation time.
Since we just need an approximate range to get the required
displacement, we discretize the shape configuration space
and set the greedy algorithm about each axis. We search
along the axis while changing axis direction like x → y →
z → x each step. We choose the maximum value on each
step’s axis and it can converge to approximate maximum
value.

C. Algorithm to find the required displacement

If we confirm that the desired torso angle is in the
reachable range, we should find the required displacement to
reach the desired torso angle. This is based on intermediate
value theorem. Bisection search narrows the range which
include the solutions by comparing the present value with
the desired value.

Algorithm 2 To find the required displacement
Input: Initial and desired q0 and shape variables θ, γdesired

Initialization: θ+ = arg max γ, θ− =arg min γ
while |γdesired − γ(θcur)| > ε do

θcur = (θ+ + θ−)/2
if γ(θcur) < γdesired then

θ− = θcur
else

θ+ = θcur
end if

end while
∆ = θcur − θini

End

Fig. 5. Branch and Bound algorithm descriptions

V. OPTIMAL CONTROL-STANCE PHASE

After the impact, we assume that 4-link robot system is
fully-actuated system. So, the controllability is assured. For
a stable landing, a robot has to return to an upright pose.
If any torque limits or energy limits are not given, there
always exist controls to get the upright pose although the

robot land at an arbitrary angle. In some previous researches,
controls for landing were tracking controls which track a
stable trajectory we already knew. Since we wanted to get
the most stable landing process without the given trajectory,
we proposed the optimal control which minimizes the energy
use as a landing control. There are a lot of ways to solve
optimal control problems such as the minimum-effort or the
minimum-energy.

min

∫ tf

t0

u2dt s.t ẋ = f(x, u, t) (24)

In this paper, we just assumed that the control is determined
as the feedback linearization control and changed the control
gain. We just compared the energy use and landing trace
through a simulation in Sec. VI.

τ = Ms(θ)(−cdq̇s − kd(qs − qd)) + Cs(q̇s)q̇s + g(qs)

qd = [π/2;−π; 0; 0] (upright pose) (25)

VI. SIMULATION RESULTS
Salto-1P already showed a great ability of jumping and

landing with its great structure. So, we assume it can
be a great simulation model. As a result, our simulation
parameters are based on the Salto-1P's size and human
body structure. We combined the human's ratio of mass and
length with Salto-1P's specification. Also, aerial time and
settling time are same as a tailbot's thing and gain is set
critically damped. The simulator is MATLAB and Simulink.
We set the state as [q0; θ1; θ2; θ3; q̇0; θ̇1; θ̇2; θ̇3]. Initial state
and desired state are given as below. These are based on
human's jumping motion snapshots. In this simulation, we
assumed that human jumps down to the ground from a high
place. The posture when it touched ground is critical to an
impact and generated angular velocity after landing. Every
simulation runs for 0.4 seconds with fixed step-size 0.002s
and solvers are auto. We simulated three controls as next.

Initial state : [2.356;-0.785;0.262;-1.047;0;0;0;0]
Desired angle: [1.920;-5.236; 1.047;-0.349]

A. Control without time-varying feedback

We first set the uncontrolled elements into torso which
has the largest inertia moment and mass. It can prevent the
singularity. We just add the desired angle of arm based on
the human's jumping motion. We choose control gain such
as cd=48, kd=496. So, we get the final angle and the results
as Fig. 6.

TABLE I
ROBOT PARAMETERS IN SIMULATION

Part Simulation robot parameter
Length(m) Mass(kg) Inertia CoM(10−5kg ∗m2)

Torso 0.12 0.0425 5.10
Arm 0.14 0.0111 1.81

Upper 0.08 0.01955 1.19
Lower 0.08 0.0119 0.63

Fig. 6. The results of shape variables control without time-varying feedback
(angle, torque)

Fig. 7. The results of control based on a cycle path (angle, torque)

Final angle: [2.621;-5.233; 1.047;-0.349]

Based on human's jumping motion, the desired torso angle is
determined as 1.920 rad. However, this control cannot make
the torso angle reach to the desired value.

B. Control with time-varying feedback

1) Feedback law based on a cyclic path: In order to
get the desired torso angle, we use time-varying feedback
control based on a cyclic path. We set k=7104, c=168.6,
kd=2304, cd=96, t1=0.16, t2=0.24, t3=0.32, and t4=0.40.
Offline computation reveals that the suitable size of path is
3.3. We get the final angle and the results as Fig. 7.

Final angle: [1.926;-5.377; 1.010;-0.348]

Since the controls along the path are applied within short
time intervals, the magnitude of torque inevitably increases

a lot. Also, joint angles exceed the limits of joint angle and
it was unreasonable.

Fig. 8. The results of new time-varying control(angle, torque)

2) New feedback control with one displacement: So,
we apply new time-varying feedback control as mentioned
above. We set k=888, c= 60, cd=72, kd=1296, t1=0.15,
t2=0.4. First, we start to find the range of a drift angle of q0
by algorithm to find the reachable range.

Reachable range: [1.868, 2.672]

After we verify that the desired torso angle is included in
the reachable range, we apply algorithm to find the required
input. So, we can find the required displacement as next.

d= [0.26; 3.14; 0]

Using this displacement, we can get the final angle as below.

Final angle: [1.920;-5.236; 1.047;-0.349]

Not only shape variables are controlled to the desired shape,
but the torso angle also reaches to the desired torso angle.

C. Comparative Anaylsis

We can see that first control without considerations for a
torso angle yields about 0.7 rad shift from the desired angle.
If a robot lands like this, it will fall down the ground. Cyclic
feedback control makes a robot reach the desired torso angle,
however, its motion looks so complicated and it breaks away
from the limits of joint angle, as you can see in Fig. 7. On
the other hand, new time-varying control makes a robot reach
the desired angle for a stable landing. The motion from this
control occurs in the possible range of joint angles. It also
needs less torque than cyclic path control.

D. Landing Control with optimal gain

After an impact, we assume that the robot land on the
ground with the desired angle. The angular velocity after
the impact is obtained as [15.8; 16.6; 46.0;-48.2] through
the impact model. Also, we can find out the angular velocity

Fig. 9. Snapshots of the 4-link robot under three controls (Left: without
time-varying feedback, Middle: with time-varying feedback on cyclic path,
Right: with time-varying feedback with a displacement) the starting moment
is dark color and the end moment is light color

Fig. 10. Snapshots of the 4-link robot's landing under three controls (Left:
cd=42(optimal), Middle: cd=21, Right: cd=63)

after the impact depends much on the velocity of CoM, rather
than the angular velocity before the impact.

q̇s
+ =


−2.00 −6.85 1.02 −0.03 −0.19 −0.03
−2.28 −7.19 −0.01 0.98 −0.18 −0.01
−6.87 −19.48 −0.14 −0.06 0.60 0.01
19.75 14.78 2.53 −0.05 −1.39 −0.03

q̇f−
(26)

With this angular velocity, we find the optimal gain to
minimize the used energy. Every simulation runs for 1.0
seconds with fixed step-size 0.005s and solvers are auto. As
a result, we get optimal gain cd=42, kd=441 to minimize the
energy use. It is not an actual optimal control, but we figure
out that simply slow stabilization to absorb a shock does not
minimize the energy use.

VII. CONCLUSIONS

In this paper, we proposed the posture control framework
of a jumping articulated robot for a stable landing. We
assumed a bipedal robot in a sagittal plane can be treated
as a 4-link robot. Also, we considered various features of
a jumping motion. We established Lagrange dynamics of a
hybrid system which is combined with a flight phase and a
stance phase. Flight phase was regarded as a Nonholonomic
Caplygin system (under-actuated) and Stance phase was
regarded as a fully-actuated system because the impact model
assumes an inelastic impact and the end point acts as an
ideal pivot. Based on this dynamics, we presented new time-
varying control by taking joint angle limits, short duration
of flight, and torque magnitude into account. It could help
a robot get the desired shape variables and the desired torso
angle within a possible angle range and with a small torque.
Moreover, after an impact, optimal landing control based on
gain tuning could yield natural motions to return to an upright

pose without any trajectory. This new control framework
in a hybrid system can help a bipedal robot to jump and
land safely, similar to human beings. Some future researches
include rigorous solutions for landing optimal control prob-
lem, finding optimal landing angle, consideration for some
joint flexibilities, and implementation of the proposed control
frame on a real 4-link robot system.

REFERENCES

[1] B. dynamics. (2016) Atlas, the world’s most dynamic humanoid.
[Online]. Available: https://www.bostondynamics.com/atlas

[2] C. Chevallereau, E. Westervelt, and J. Grizzle, “Asymptotically stable
running for a five-link, four-actuator, planar bipedal robot,” The
International Journal of Robotics Research, vol. 24, no. 6, pp. 431–
464, 2005.

[3] M. G. Pandy, F. E. Zajac, E. Sim, and W. S. Levine, “An optimal
control model for maximum-height human jumping,” Journal of
biomechanics, vol. 23, no. 12, pp. 1185–1198, 1990.

[4] N. Shiraishi, Y. Kawaida, Y. Kitamura, S. Nakaura, and M. Sampei,
“Vertical jumping control of an acrobat robot with consideration
of input timing,” in in SICE, Proceedings of 2002 SICE Annual
Conference on, vol. 4. IEEE, 2002, pp. 2531–2536.

[5] R. Niiyama, A. Nagakubo, and Y. Kuniyoshi, “Mowgli: A bipedal
jumping and landing robot with an artificial musculoskeletal system,”
in in Robotics and Automation(ICRA), Proceedings of 2007 IEEE
International Conference on. IEEE, 2007, pp. 2546–2551.

[6] D. W. Haldane, J. K. Yim, and R. S. Fearing, “Repetitive extremeac-
celeration (14-g) spatial jumping with salto-1p,” in Submitt. to IEEE
Int. Conf. Intell. Robot. Syst, 2017.

[7] X. Xin, T. Mita, and M. Kaneda, “The posture control of a 2-link
free flying acrobot with initial angular momentum,” in Decision and
Control, Proceedings of 2002 IEEE Conference on, vol. 2. IEEE,
2002, pp. 2068–2073.

[8] T. Libby, A. M. Johnson, E. Chang-Siu, R. J. Full, and D. E.
Koditschek, “Comparative design, scaling, and control of appendages
for inertial reorientation,” IEEE Transactions on Robotics, vol. 32,
no. 6, pp. 1380–1398, 2016.

[9] J. Zhao, T. Zhao, N. Xi, M. W. Mutka, and L. Xiao, “Msu tailbot:
Controlling aerial maneuver of a miniature-tailed jumping robot,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 2903–
2914, 2015.

[10] G. C. Walsh and S. S. Sastry, “On reorienting linked rigid bodies using
internal motions,” IEEE Transactions on Robotics and Automation,
vol. 11, no. 1, pp. 139–146, 1995.

[11] R. Olfati-Saber, “Nonlinear control of underactuated mechanical sys-
tems with application to robotics and aerospace vehicles,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2001.

[12] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. Wiley New York, 2006, vol. 3.

[13] H. Yang and D. Lee, “Dynamics and control of quadrotor with robotic
manipulator,” in Robotics and Automation (ICRA), Proceedings of
2014 IEEE International Conference on. IEEE, 2014, pp. 5544–
5549.

[14] Y. Hurmuzlu and D. B. Marghitu, “Rigid body collisions of planar
kinematic chains with multiple contact points,” The international
journal of robotics research, vol. 13, no. 1, pp. 82–92, 1994.

[15] J. Angeles and A. Kecskemethy, Kinematics and dynamics of multi-
body systems. Springer, 2014, vol. 360.

[16] J.-M. Godhavn, A. Balluchi, L. Crawford, and S. Sastry, “Path
planning for nonholonomic systems with drift,” in American Control
Conference, 1997. Proceedings of the 1997, vol. 1. IEEE, 1997, pp.
532–536.

[17] A. De Luca, R. Mattone, and G. Oriolo, “Steering a class of redundant
mechanisms through end-effector generalized forces,” IEEE transac-
tions on Robotics and Automation, vol. 14, no. 2, pp. 329–335, 1998.

