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Abstract—Multi-robot’s cooperation to carry an object to a
target problem is a challenging problem because path planning
should be computed for each other differently. This problem
consists of several sub-problems like navigation, cooperation, and
obstacle avoidance. In this paper, I apply DQN(Deep Q-network)
to solving this problem. To optimize the learning method for
navigation problem, this work uses curriculum learning and
develops revised mini-batch sampling method which always
includes a success state. Moreover, a centralized multi-robot
problem has a curse of dimensionality, which means the size of
action space increases exponentially. This work uses the method
which reduces the action space through allocating one step for
one agent. It reduces the computation time for network updates
and predictions. Simulation results show that revised sampling
'discounted reward sum is more stable than previous random
sampling's thing. In addition, curriculum learning yields faster
and more stable convergence compared to normal learning.
Finally, reduction of action space lowers the computation time,
however, it makes the reward sum graphs fluctuate unstably.

Index Terms—Navigation, Cooperation constraint, Obstacle
avoidance, DQN, Curriculum learning, Sampling method, Re-
duced action space

I. INTRODUCTION

There have been rapid developments of cooperative multi-
robot systems in recent years. Search and Rescue, collision
avoidance, and formation control are main challenges. Also,
as described in Fig. 1, mobile manipulators cooperation to
carry the objects is very promising for many applications
[1]. Unlike a single robot, multi-robots which grasp the
same object require many complex considerations in order to
keep objects not to drop and avoid the obstacle. Each robot
has different strategy and planning because they have each
different states such as pose and distance from obstacles. Not
only how the object’s trajectory should be set, but also how
each robot should move are significant issues. A lot of previous
research about robot cooperation focused on tracking the given
trajectory of CoM(Center of Mass)of the object or real-time
solving optimization problem while the robots are moving [2].
But, the former requires a priori knowledge of trajectory and
it is not flexible for various situations. The latter requires an
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Fig. 1. Mobile manipulators cooperation to carry the objects

exact environment’s information and this requires a lot of com-
putation time to judge the situation and decide its movements
in real-time. In recent years, reinforcement learning provides
a good solution for this sequential decision-making problem.
This can help us already know the optimal policy over every
instances. So, simulation based reinforcement learning can
provide how to decide its action in various cases. The robots
which are trained from off-line simulation in advance can
determine its action much faster.

In fact, many researches about applying reinforcement
learning to obstacle avoidance problem have already been
studied. Q-learning algorithm can be used to the decision
of when one agent chooses to rotate or move backward [3].
It works well if they can detect the obstacle without priori
knowledge of obstacle position and planning. In addition,
navigation problems also have been studied recently [4], [5],
[6]. They apply some learning algorithms such as Q-learning,
SARSA to the task which reaches the target. To navigate
toward the target, the agent has to know the information about
the distance from the target position. They get the positive
reward when they get closer to the target position. They need
more computation time and large iterations. The reward sum
is inclined to increase, but, it has unstable fluctuations in
common. In the research of Google DeepMind that is one



of the best reinforcement learning team, they applied many
revised algorithms like A3C with LSTM to single agent's
navigation in complex environments [7]. They also made a
single agent navigate in a human-level control using SLAM
and auxiliary depth predictions.

However, there are few attempts for multi-robots. If we
consider each agent in view of centralized manner, the size of
action space becomes larger. So, it is not good for convergence
of approximate function of state-value function(Q-function)
because there are a lot of state-action pairs and computation
complexity is too large. Issue of exploration is also signif-
icant for solving problem. Moreover, cooperation imposes
constraints on robot's actions. Therefore, some decentralized
controls with reinforcement learning are also studied to avoid
the difficulties mentioned above. However, I try to apply DQN
to multi-robot cooperation in centralized manner. Instead, I
suggest some technical methods in order to resolve above
issues. The main contribution of this work is an application
of reinforcement learning to controlling of multi-robots coop-
eration, not only a single navigation. Also, it can decrease
the computation time compared to the traditional real-time
path planning or decision-making. For this achievement, this
work includes curriculum learning, revised sampling method
specialized for navigation problem, and action space reduction.

The rest of this paper is organized as follows. In Sec. II,
we formulated this problems with how to mange objectives in
mathematically description and MDP(Markov Decision Pro-
cess). Which algorithm and approach I apply to this problem
and how I revise them with my ideas are established in Sec.III.
Simulation set-up such as environment condition and episode
is presented in Sec.IV. All simulation results are presented in
Sec.V, and Sec.VI concludes the paper.

II. PROBLEM FORMULATION

A. Sequential decision-making to reach the target

Many multi-robots problem can be described as a Dec-
POMDP(Partially-Observable Markov Decision Process). But,
I assume this problem is formulated as a centralized fully
observable Markov decision process. The main task is to
carry the objects to the target position without dropping and
obstacle collision. Then, my objective is to find the decision-
making strategy to perform the task well. It is assumed that
the object is large or heavy. So, they need to cooperate
for carrying the object. I assume two mobile manipulators
collaboratively carry a rigid object. Each robot has an ma-
nipulator and omni-directional wheels. In order to focus on
the navigation problem, I consider their grasping controls and
grasping planning could be guaranteed and it is not included
in the decision-making process. It only decides how to move
for each robots in case of cooperation. Each robot can move
toward four directions (UP, DOWN, LEFT, RIGHT) and stop
in 2-D area and change the directions arbitrarily. In this work,
the center point of them has to reach the target position.
When this is accomplished, I regard it as a task success.
To carry the object cooperatively, the required condition is
the distance between two robots. Because I assume required

manipulator’s motion is guaranteed, the cooperation constraint
is only that the distance is lower than the given value. In
addition, they also need to avoid obstacles while they are
going toward the target. This is also described as keeping the
distance over certain value. Therefore, this sequential decision-
making problem is formulated as navigation problem with the
cooperation constraint and the collision avoidance constraint.

B. Markov Decision Process Description

This sequential decision-making problem can be formulated
as a MDP(Markov Decision Process). So, this problem has a
tuple of < S,A, P, r, γ >. S is the state space, A is the action
space, P is the state-transition model, r is the reward(stage-
wise cost), and γ is a discount factor.

• State Space :
State is constructed as the robot1's position, robot2's
position, target position, obstacle's positions. So, s =
[x1, y1, x2, y2, ptarget, pobs1, pobs2] ∈ R10 can be de-
scribed.

• Action Space :
Action space is expressed with U =

∏n
i Ui = U1 × U2

and Ui = [UP, DOWN, LEFT, RIGHT, STOP] where UP
= [0,1], DOWN = [0,-1], LEFT = [-1,0], RIGHT = [1,0],
STOP = [0,0]. One step means that every robot decides
each actions. It can express every situation because it
includes stop motion in the individual action space.

• State-transition model :
In this work, only position of each robot changes for
simplicity. I do not consider the dynamic obstacles and
random targets. State-transition model is simple in this
problem. The position is determined by velocity, time
gap, noise and moving directions decided by actions. It
can be expressed mathematically as below.

st+1 = st + action× V el ×∆t+ noise (1)

• Reward function :
A reward function is specified to award the robots for
reaching the target and penalize the robots for dropping
the objects due to large distance or colliding with obsta-
cles. Detailed value and condition will be described in
simulation set-up section.

• Discount factor :
It is specified as 0.98 in this work.

In this formulation, each robot has to choose its action every
moment in order to maximize the discounted sum of stage-
wise cost. But, it is not easy to choose its action because we
do not know the exact cost function. So, we apply simulation
based learning method to this problem. Two robots run on the
simulation environment and get the reward of simulator. The
reward is included in the simulation and it is determined by
human 's intuition.

III. APPROACH

I introduce four approaches which represent this work. They
are DQN, Revised sampling with success state, Curriculum
learning, Reduced action space.



Fig. 2. DQN 2015 algorithm

A. Deep Q-network

Google DeepMind team showed great achievements in the
reinforcement learning in Atari2600 games with DQN(Deep
Q-network) 2013 and DQN 2015. They applied Deep learning
technique into Q-learning algorithm. Moreover, they intro-
duced replay memory to remove the samples'correlations and
the separation of target network from main network. DQN has
a great power to approximate Q-value accurately and to find
optimal policy with greedy policy. It is based on fundamental
Q-learning, but it approximates Q function through DNN(Deep
Neural Network) with replay sample and Double Q-network.
It can tackle the huge state space and discrete actions through
neural network. This problem also has a huge state space
which is 10 dimensional vector and discrete actions consisted
of 5 actions. DQN can approximate the Q-value of each state
and yield the optimal policy in case of its state. In particular,
I use DQN2015 learning method in this work. DQN2015
algorithm can be showed in Fig. 2 [8].

B. Revised sampling with adding success state

One of DQN 2015's gist is random sampling from experi-
ence replay memory. This memory stores experience tuple as
(state, action, reward, next state, whether episode terminates)
every time-step with a limited storage size. But, only mini-
batches which is randomly sampled from replay memory are
used to update the Q-network due to removal of correlation.
However, replay memory has not uniform distribution of state-
action-reward tuples in this problem. Navigation problems
have fewer positive rewards than negative rewards or non-
reward in a whole episode. This is because a crucial reward is
to reach a target and it occurs only once or never in an episode.
So, replay memory has a lot of tuples with obstacle collision or
dropping the object(cooperation failure), whereas there are few
tuples with reaching target in a replay memory. Even if random
sampling method gets rid of correlation of states, randomly

sampling in replay memory mostly does not include success
states like reaching a target. It can make the network update
weights in an appropriate way. It could be different from our
real Q-value and it yields divergence. Therefore, we change
some sampling method a little. If we train the neural network
with a mini-batch which samples from the replay memory,
we add one success state to the mini-batch necessarily. Then,
network would update with considerations for success state. It
can update the network more properly.

C. Curriculum learning

Navigation problem is a chronic problem of reinforcement
learning because it has a difficulty of sufficient exploration.
Other MDP problems usually have some explicit rewards
frequently during training and they also just want to increase
their total reward(cost function) ultimately. For example, Atari
game steadily gets the score reward and obstacle avoidance
also get penalty reward often. But, the navigation problem
gets only one strong reward after they reach the target and they
do not need to increase the reward after they achieve it. The
episode is terminated if the agent reaches the target. So, the
issue of exploration is more important than other problems.
This tendency also increases when the environment is huge
and state space is large. If they cannot explore the space
enough, the problem's solution can go to the local optima or
very slow convergence. When they do not explore near the
target, they have little experience about high rewards and Q-
network updates with improper weights. Also, the convergence
of Q-value toward optimal Q-value is not guaranteed in a
fundamental assumption of Q-learning because every state-
action pairs are not visited infinitely.

To resolve the issue of exploration and slow convergence
of neural network, various method are suggested. Some re-
searchers developed curriculum learning, where the goal is to
design a sequence of source tasks for an agent to train on, such
that final performance or learning speed is improved [9]. It is
similar to providing the agents with the guidance of human-
education. The researcher provides some easy missions for
agents in advance because they want to update the network
with great initialized weights and the agents can explore
some suitable state earlier. After they complete some easy
missions, I can provide more complicated missions. Like
human's curriculum, the researcher increases the level of
difficulty gradually.

In this experiment, I first offer a state with a close distance
toward the target. I save the weights of the network. After that,
a state with the further distance is offered and started to train
with previous weights. Then, I start the original mission with
pre-trained Q-network. It will have a great effect to stabilize
convergence and reduce hours of computation.

D. Reduced Action space

When multi-robots perform on some tasks, the size of action
space inevitably increases rapidly. It is proportional to the
product of each robot's action space sizes. So, it increases
exponentially. If we use n-robots in this experiment, I have to



Fig. 3. 2-Dimensional map environment

consider the action space size of 5n. It can be so huge that I
have to spend a lot of time to converges the network because
it is same as the output layer size. I need to use large size
of layers and need to compute more times. So, I suggest new
method which can create Q-value in a different way. It is the
method which reduces the size of action space. Previous action
space U =

∏n
i Ui, however, we select U =

∑n
i Ui instead.

This reduction of action space size changes the meaning of
each time step. In previous action space, each time step means
the decision of every robots'action. But, in this action space,
each time step means the decision of one action among every
robots'actions. Even if steps need to proceed twice(n-times),
this will be much faster when the neural network updates and
predicts.

IV. SIMULATION SETUP

A. Environment

This work is modeled in a 2-D planar environment which
is a 7 × 7 square. Two robots can move inside the map and
both position x and position y are included in [0,7]. This
work assumes the robot 's sensor detecting and localization are
sufficient to know the position of each robot and target directly.
So, this work can include the position value in the state. Target
position and two obstacles positions are fixed in this work,
but, we can change them if we have the long training-time.
Robot1's position and robot2's position can change while the
simulation runs. Fig.3 shows this simulation environment. This
environment is made by myself using python matplotlib.

B. State-action space discretization

Since DQN method cannot be applied to continuous action
values, I have to discretize the action space. So, I divide
it by direction and add stop motion to it. Also, I should
consider state space because it can have infinite states unless
we discretize the state space. The condition that approximation
of q function would be accurate is the small number of states.
The more states there are, the harder the network approximates
the Q-function. Also, Q-learning is unlikely to converge be-
cause states cannot be visited sufficiently. Moreover, even if I

consider only 4 elements among 10 elements, the complexity
of computation can be so high when I divide the space finely.
So, this work determines that the state space is divided by
0.5 intervals. It means that this work decides the velocity as
fixed value(0.5) and time gap is 1. At each state, robot1 and
robot2 have 5 actions each other. So, total action space has 25
different action selections.

C. Reward function

Reward is provided every time the robots do some action in
the simulation. The robots try to estimate the real cost function
from this reward. The reward function has been chosen by
human intuition. It should be able to award the agent for
approaching the target and penalize the agent for dropping
the object or colliding with obstacles. The reward function is
set up as follows in this work.

• Reward = 1000
(when the center of robots reaches the target )

• Reward = −2× distance
(when the distance between two robots is higher than
criteria)

• Reward = −1
(when they collide with the obstacles)

• Reward = 100× ( 1
dt+1
− 1

dt
)

(from potential field difference)

D. Episode and step

The simulation runs on python with tensorflow library. I
proceed this simulation based on curriculum learning. So, I
divide training process into two steps as below. Easy task has
a starting point of [2,5,3,6] and hard task has a starting point
of [2,4,2,5].

1) Easy task : 500 episodes (max 2000 steps per episode)

2) Hard task : 3000 episodes(max 10000 steps per episode)

One episode iterates within maximum step number 2000
or 10000 steps. Reaching target terminates the episode. Mini-
batch size of 50 and one epoch corresponds to weight updates
as same number of episode. Also, I use annealing-e in an
e-greedy policy, which means e decreases from 1 to 0.1
before episode gets to 0.1×MAXEPISODE 0.1 after it gets
to 0.1×MAXEPISODE .

E. Neural Network structure

This work used MLP(Multi-Layer PerceptronS) instead of
CNN because the computation capacity cannot cover the
Image input. This work uses a neural network with two hidden
layers of width (16,32) and activation layer is ReLU function.
We have two types of how to construct neural network about
Q-value. First thing is to put both states and actions into the
input layers. The second thing is to put only states into the
input layers and output layer has the same number of values
as the number of actions. This work chooses the latter one.



Fig. 4. Two types of task(Left : easy, Right : hard)

The network updates its weights to minimize the difference
between the predicted output and the Q-value. The minimizer
is Adam-optimizer and the period of copying target network
is 100 steps for easy task and 1000 steps for hard task.

V. EXPERIMENT RESULTS

This work performs on a LG-gram laptop with an i5-
6200U CPU, using a python and tensorflow library on jupyter
notebook. It takes a lot of time to perform this task because
of this low performance capacity. This restricts the diverse
experiments. This work usually compares the change of the
discounted reward sum or average of maximum Q-value.

A. Penalty reward vs constrained action

This problem is constrained maximization problem, which
has the cooperation constraint, obstacle avoidance constraint,
map size constraint. This work already decides to manage
cooperation and obstacle avoidance constraint through neg-
ative reward. However, I try to tackle the map size constraint
through two different methods. The first method is to penalize
the agent with a negative reward(-50) if its action violates the
constraint which makes robots outside the map. The second
method is to enforce the agent not to be able to violate the
constraint. The latter is decided inside the environment setting
itself. As a result, the former does not show any convergence
while the latter shows faster convergence.

Fig. 5. Discounted reward sum versus episode (Left : penalty reward, Right
: constrained action)

B. Random sampling vs Revised sampling

Replay memory has to include diverse tuples, so we add
success case into mini-batch by force to cover its rarity. This
work runs with no curriculum learning and 3000 episode with
maximum 10000 steps. This work compares discounted reward
sum and average of maximum Q-value.

Fig. 6. Discounted reward sum versus episode (Left : random sampling, Right
: revised sampling)

Fig. 7. Average of maximum Q value sum versus episode (Left : random
sampling, Right : revised sampling)

In this work, two sampling method cannot show remark-
able difference between two things because it converges fast
enough. However, I can find revised sampling is more stable
as you can see in Fig.6. Average of maximum Q-value looks
a little different. Random sampling looks more stable than
revised sampling. It needs other examples or experiments for
longer episodes. However, it shows that random sampling's
early stage increases rapidly with lucky inclusion of many
success cases whereas revised sampling's early stage steadily
increases. It is supposed that low exploration stage of early
episode can be stable from revised sampling.

C. Curriculum learning vs Normal learning

This work try to compare curriculum learning with normal
learning. This work struggled to show the obvious difference
between two learnings and the great effect of curriculum offer.
So, very hard task was tried in 6000 episode with maximum
10000 steps. But, it took a lot of time and it cannot be
managed by my laptop. Therefore, I changed it to easier task.
Nevertheless, it can be compared well. It shows enough effect
of curriculum learning.



Fig. 8. Average of maximum Q value sum versus episode (Top: discounted
reward sum of easy task, Left : discounted reward sum of hard task, Right :
discounted reward sum of hard task without curriculum)

Fig.8 shows that curriculum learning converges much faster
and becomes more stable than normal learning. Furthermore,
normal learning even raises velocity because the case of
velocity 0.5 did not converge until 2000 episode with 10000
steps. In spite of this penalty, curriculum learning achieves
greater performance.

D. Action space reduction

As mentioned before, this work reduces actions space size
52 to 5+5. It can help the computation time decrease and it
can help me tackle this problem in centralized manner within
available operations.

As expected, its running time is shorter than previous
method 's thing. It takes 556s for easy task and 3297s for
hard task while previous method takes 820s for easy task and
5897s for hard task. It is showed that reduced action space
learning requires more episodes to reach the optimal reward
sum. However, if we consider the meaning of one step, it is
not slow convergence. But, its stability becomes much worse
until enough exploration as you can see in Fig.9. The hopeful
point is that fluctuation decreases and becomes quite stable
after enough exploration proceeds(after 400 episodes for easy
task and 2500 episodes for hard task).

VI. CONCLUSION

A. Analysis

After training from DQN, two robots can navigate toward
the target well as you can see in Fig.10 and Fig.11. Before
training, two robots move meaninglessly far away from the
target. However, two robots become to be able to go toward
the target and keep distance under the criteria with obstacle

Fig. 9. Comparison of total action space and reduce action space about
discounted reward sum (Top: total action space with curriculum learning,
Bottom : reduced action space with curriculum learning)

Fig. 10. Simple snapshots of robot movement before training



Fig. 11. Simple snapshots of robot movement after training

avoidance. I can find the achievements of task from the DQN
training.

This work contributes to the applications of DQN into multi-
robot cooperation. The random sampling from replay memory
is not always good for navigation problem, so revised replay
memory sampling is suggested and it stabilizes when sufficient
explorations are not satisfied. Also, it shows that curriculum
learning is very powerful in fast convergence and stability
of navigation problem. New attempt to consider the curse of
dimensionality is the reduction of action space, which lowers
computation time, but increases the instability and fluctuation.

The obstacle avoidance problem is well solved by Q-
learning as mentioned before. Moreover, dynamic obstacle
problem has also been solved. I guess cooperation problem is
similar to this dynamic obstacles problem because it is about
changing distance constrained problem. However, both action
selection influences on the distance and it makes difference
from dynamic obstacles. It is hard to choose best action for
obstacle avoidance if I also consider reaching the target.

Navigation problem has a characteristic that its rewards are
often sparsely distributed in the environment and only one
strong reward is located densely. It can yield some fluctuations
in overall even if it converges a fixed value. It can be showed
in all graphs.

.

B. Future work

New curriculum learning will be studied. Two suggestions
exists. First thing is that multi-robot's cooperation are trained
after path planning is created through learning of a single agent
earlier. Second thing is that human provides the guidance of
traditional navigation solution, which pre-calculated optimal
solution such as LQR. Decentralized decision-making can be
also studied. Only one agent knows all state information,
while others just know the distance from each other. More
complicated manipulators kinematics can be included in a state
model. So, I will consider the end-to-end learning of carrying

the object task. Because DQN is not stable for policy and
it has clear limitations of computation, other learning method
like A3C has to be tried and compared to DQN. It is necessary
to elaborate the environment for fancy performance. This work
will be practical if it considers more actions like 8 directions.
Moreover, velocity or obstacles position can change.
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